###
有色金属(选矿部分):2023,(4):80-85
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于机器视觉的雷波薄夹层磷矿石预分选研究
牟少樊, 张翼, 李佳楠, 顾玉成, 陈希阳, 王紫越
(武汉工程大学资源与安全工程学院)
Study on pre separation of phosphorus ore with thin interlayer in Leibo based on machine vision
MouShaoFan, ZhangYi, LiJiaNan, GuYuCheng, ChenXiYan, WangZiYue
(Wuhan Institute of Technology -School of Resources & Safety Engineering)
摘要
图/表
参考文献
相似文献
本文已被:浏览 506次   下载 384
投稿时间:2022-07-05    修订日期:2022-07-11
中文摘要: 随着磷矿资源的快速消耗,现阶段我国中低品位磷矿存在占比大且利用率较低的问题,导致生产处理成本增加。利用机器视觉技术代替人工观察实现提前抛废,对磷矿进行预富集,提升矿石综合利用效率及减少经济成本。针对四川省雷波县巴姑中低品位薄夹层磷矿的特性,本文提出一种基于HSV颜色模型采用多阈值法提取特征值并结合KNN算法的磷矿动态实时预分选算法。待选矿石经本算法分选进行化验后的精矿品位可到18.3%,这表明本文提出的算法的识别准确率较高,基本满足企业识别尾矿的分选需求,达到抛尾的目的。
中文关键词: 薄夹层磷矿  HSV颜色模型  KNN  磷矿预选
Abstract:With the rapid consumption of phosphate rock resources, there are problems of large proportion and low utilization rate of low-grade phosphate rock in China at this stage, which leads to the increase of production and treatment costs. Instead of manual observation, machine vision technology is used to realize early discarding and preconcentration of phosphate rock, so as to improve the comprehensive utilization efficiency of ore and reduce the economic cost. According to the characteristics of Bagu medium and low-grade thin bedded phosphate rock in Leibo County, Sichuan Province, a dynamic real-time pre separation algorithm of phosphate rock based on HSV color model, multi threshold method and KNN algorithm is proposed in this paper. The concentrate grade of the ore to be sorted and tested by this algorithm can reach 18.3%, which shows that the recognition accuracy of the algorithm proposed in this paper is high, which basically meets the separation needs of enterprises to identify tailings, and achieves the purpose of tailing.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
牟少樊,张翼,李佳楠,顾玉成,陈希阳,王紫越.基于机器视觉的雷波薄夹层磷矿石预分选研究[J].有色金属(选矿部分),2023(4):80-85.
MouShaoFan,ZhangYi,LiJiaNan,GuYuCheng,ChenXiYan,WangZiYue.Study on pre separation of phosphorus ore with thin interlayer in Leibo based on machine vision[J].Nonferrous Metals(Mineral Processing Section),2023(4):80-85.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线

杂志信息

期刊简介

相关下载

联系我们

电话:10-63299852/63299758

传真:10-63299754

QQ:XXXXXXX

Email:YSXK@BGRIMM.COM

邮编:100160

地址:北京市南四环西路188号总部基地18区23号楼

关注微信公众号