###
有色金属(选矿部分):2024,(12):119-127
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于改进ShuffleNetV2网络的X射线钨矿识别方法
(1.江西理工大学电气工程与自动化学院 赣州有色冶金研究所有限公司;2.江西理工大学电气工程与自动化学院;3.赣州有色研究所有限公司)
X-ray tungsten ore identification method based on improved ShuffleNetV2 network
Yang Wenlong1, Song Yi1, qiumingguang2, guo mingyu3, Liu Zhixing4, Wu Honghui3
(1.School of Electrical Engineering and Automation,Jiangxi University of Science and Technology;2.chool of Electrical Engineering and Automation,Jiangxi University of Science and Technology;3.Ganzhou Nonferrous Metallurgy Research Institute;4.School of Electrical Engineering and Automation, Jiangxi University of Science and Technology)
摘要
图/表
参考文献
相似文献
本文已被:浏览 155次   下载 275
投稿时间:2024-03-19    修订日期:2024-07-16
中文摘要: 针对部分矿山矿石分选设备算力不足没有合适的矿石分类模型,通过自建以X射线透射成像的矿石图像为数据集,提出了一种基于ShuffleNetV2矿石分类识别模型。首先,通过改进ShuffleNetV2的基本单元,将3x3的深度卷积扩大成7x7的深度卷积,以提升感受野;其次,通过引入卷积块注意力模块,提取更具区分性的特征,同时抑制无关特征;采用h-switch激活函数减少沉默神经元的出现,避免了在输入为负值时使用ReLU导致的神经元坏死;调整网络的层级结构,减少单元重复的次数使模型更加轻量化,最后利用知识蒸馏对模型进行训练,以提升模型的性能。实验结果表明识别准确率能达到98.67%,比原模型提高了5.42%,且参数量减少了0.18M,矿石识别速度仅为7ms,同时相比SqueezeNet、Xception、MobiletNetV2、Vgg16、DenseNet121以及原模型在准确率、矿石识别速度及模型大小上都获得了提升,可部署于算力不足的中小型矿山矿石分选设备中。
Abstract:In view of the lack of computing power of some mine ore sorting equipment and the lack of suitable ore classification model, a ore classification and recognition model based on ShuffleNetV2 was proposed by taking the ore image of X-ray transmission imaging as the data set. Firstly, by improving the basic unit of ShuffleNetV2, the depth convolution of 3x3 is expanded into a depth convolution of 7x7 to improve the receptive field. Secondly, by introducing the convolutional block attention module, more distinguishing features are extracted, while irrelevant features are suppressed. h-switch activation function was used to reduce the occurrence of silent neurons, which avoided neuronal necrosis caused by ReLU when the input was negative The hierarchical structure of the network is adjusted to reduce the number of unit repeats to make the model more lightweight. Finally, knowledge distillation is used to improve the performance of the model. The experimental results show that the identification accuracy can reach 98.67%, which is 5.42% higher than the original model, and the number of parameters is reduced by 0.18M, and the identification speed is only 7ms. Compared with SqueezeNet, Xception, MobiletNetV2, Vgg16, DenseNet121 and the original model, the accuracy, ore identification speed and model size have been improved, and can be deployed in small and medium-sized mine ore sorting equipment with insufficient computing power
文章编号:     中图分类号:    文献标志码:
基金项目:江西省重点研发计划项目(20202BBEL53016)
引用文本:
杨文龙,宋旖,邱明光,郭明钰,刘志信,吴鸿辉.基于改进ShuffleNetV2网络的X射线钨矿识别方法[J].有色金属(选矿部分),2024(12):119-127.
Yang Wenlong,Song Yi,qiumingguang,guo mingyu,Liu Zhixing,Wu Honghui.X-ray tungsten ore identification method based on improved ShuffleNetV2 network[J].Nonferrous Metals(Mineral Processing Section),2024(12):119-127.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线

杂志信息

期刊简介

相关下载

联系我们

电话:10-63299852/63299758

传真:10-63299754

QQ:XXXXXXX

Email:YSXK@BGRIMM.COM

邮编:100160

地址:北京市南四环西路188号总部基地18区23号楼

关注微信公众号