本文已被:浏览 20次 下载 10次
投稿时间:2024-07-19 修订日期:2024-08-25
投稿时间:2024-07-19 修订日期:2024-08-25
中文摘要: 针对矿石自动分选面临样本质量低、数量少的问题,提出将线性图像处理与权重投票结合的解决方法。该方法核心在于将线型图象处理与神经网络结合达到从多方面提取图像特征。通过将双能减影与神经网络结合的方法,提升神经网络对不同密度矿石的区分,从而提高分选的准确性。拉普拉斯算子的引入强化了神经网络对图像边缘的检测,使模型能够更清晰地识别矿石的轮廓和纹理特征。通过多网络训练方式,模型能够从不同角度学习和理解矿石的特征,从而提高其泛化能力。本实验通过采用权重投票机制来集成不同网络的输出结果。在权重投票过程中,每个网络的输出都会根据其在验证集上的表现被赋予一定的权重。最终,模型会根据这些权重来决定每个样本的分类结果,即精矿或尾矿。实验结果表明,该方法在矿石自动分选任务中表现出了较高的准确性。其中,双能减影技术和拉普拉斯算子的准确率均超过了90%,而傅里叶滤波技术也达到了89%的准确率。权重投票网络在准确率、精确率、召回率、特异度以及F1分数上分别达到了92.5%、94.31%、90.2%、94.7%和92.2%。这些指标均优于传统的矿石分选方法,证明了该模型在实际应用中的有效性和优越性。
Abstract:To address the issues of low quality and quantity of samples in ore automatic sorting, a solution combining linear image processing with weighted voting is proposed. The core of this method lies in integrating linear image processing with neural networks to extract image features from multiple aspects. By combining dual-energy subtraction with neural networks, the method enhances the neural network"s ability to distinguish between different density ores, thereby improving the accuracy of sorting. The introduction of the Laplacian operator strengthens the neural network"s detection of image edges, allowing the model to more clearly identify the contours and texture features of the ore. Through multi-network training, the model is able to learn and understand the characteristics of the ore from different perspectives, thus enhancing its generalization ability. In this experiment, a weighted voting mechanism is used to integrate the output results of different networks. During the weighted voting process, each network"s output is assigned a certain weight based on its performance on the validation set. Ultimately, the model determines the classification result for each sample, i.e., concentrate or tailings, based on these weights. Experimental results show that this method has demonstrated extremely high accuracy in the task of ore automatic sorting. The accuracy rates of both dual-energy subtraction technology
keywords: Copper ore sorting X-ray transmission technology integrated weighted voting dual-energy subtraction Laplace operator Fourier transform filtering
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金资助项目;江西省主要学科学术和技术带头人培养计划项目
作者 | 单位 | |
张峰源* | 东华理工大学 | 2022110188@ecut.edu.cn |
何剑锋 | 东华理工大学 | |
李卫东 | 东华理工大学 | |
袁兆林 | 东华理工大学 | |
聂逢君 | 东华理工大学 | |
钟国韵 | 东华理工大学 | |
汪雪元 | 东华理工大学 | |
瞿金辉 | 东华理工大学 | |
夏菲 | 东华理工大学 |
引用文本:
张峰源,何剑锋,李卫东,袁兆林,聂逢君,钟国韵,汪雪元,瞿金辉,夏菲.基于X射线透射图像的CNN集成学习铜矿石识别分选研究[J].有色金属(选矿部分),2025(5):54-62.
ZhangFengYuan,HE Jianfeng,LI Weidong,YUAN Zhaolin,NIE Fengjun,ZHONG Guoyun,WANG Xueyuan,QU Jinhui,XIA Fei.Research on copper ore identification and sorting based on CNN ensemble learning based on X-ray transmission images[J].Nonferrous Metals(Mineral Processing Section),2025(5):54-62.
张峰源,何剑锋,李卫东,袁兆林,聂逢君,钟国韵,汪雪元,瞿金辉,夏菲.基于X射线透射图像的CNN集成学习铜矿石识别分选研究[J].有色金属(选矿部分),2025(5):54-62.
ZhangFengYuan,HE Jianfeng,LI Weidong,YUAN Zhaolin,NIE Fengjun,ZHONG Guoyun,WANG Xueyuan,QU Jinhui,XIA Fei.Research on copper ore identification and sorting based on CNN ensemble learning based on X-ray transmission images[J].Nonferrous Metals(Mineral Processing Section),2025(5):54-62.