本文已被:浏览 633次 下载 713次
中文摘要: 微细粒矿物(<10 μm)具有质量低、惯性小、可浮性差以及药剂消耗量大等特点,不仅会增加浮选成本,还会造成
矿物资源的大量浪费。总结了近年来关于纳米气泡浮选的相关文献,明确了表面纳米气泡与体相纳米气泡的具体概念,介绍了纳
米气泡的生成、表征及其在微细粒矿物浮选过程中的行为特征及作用机制,重点讨论了在上述领域取得的最新研究进展。现有
研究结果表明,纳米气泡可通过水力空化法进行规模化制备,其表面电位通常呈负值,且受pH值调控;纳米气泡优先在疏水性表
面选择性生成,其稳定时间可高达48 h及以上。纳米气泡强化浮选机理主要包括:增大矿物的宏观接触角进而增加颗粒与气泡
的黏附力;降低溶液表面张力从而优化泡沫的稳定性;通过毛细管作用可增强疏水性微细粒矿物的团聚,提高目的矿物与脉石矿
物的分选效率。实际矿石试验结果表明,对于煤泥浮选来说,纳米气泡可使可燃体回收率提高近50%,同时起泡剂用量减少三分
之一以上;对于硫化矿浮选来说,纳米气泡可使得黄铜矿回收率增加近20%;在氧化矿应用方面,纳米气泡的引入可在提高目的
矿物回收率的同时提高浮选动力学。另外,纳米气泡在固废资源回收利用方面也有广阔的应用前景。总体而言,这种创新方法为
超细矿物分离提供了经济可行且环境友好的解决方案,通过将浮选药剂消耗降低30%~50%,并将矿物回收率较传统方法提升
15%~50%,有望实现矿物加工经济效益的重要突破。
Abstract:froth flotation and wastewater treatment,however,hydrodynamic or acoustic cavitation is the most popular method to produce nanobubbles on a large scale. The nanobubble-enhanced flotation mechanisms primarily involve three
synergistic effects:enhancement of mineral hydrophobicity through increased macroscopic contact angles,thereby
strengthening particle-bubble adhesion forces;the presence of nanobubbles,particularly surface nanobubbles,
significantly increases the macroscopic contact angle of minerals,directly strengthening particle-bubble adhesion
forces critical for fine particle capture;promotion of capillary-driven agglomeration of hydrophobic ultrafine particles,
improving separation efficiency between target minerals and gangue. Industrial-scale tests have revealed significant
performance improvements. In coal flotation,the application of NBs achieved 24%-50% higher combustible
recovery while reducing frother dosage by 30%-50%. NBs also mitigated clay slime coating and shortened flotation
time. For sulfide flotation,nanobubbles increased chalcopyrite flotation recovery by 20%. For oxide mineral flotation
the introduction of nanobubbles improved rutile flotation kinetics by 25% with reduced reagent consumption and
enhanced hematite reverse flotation recovery by 16% with accelerated kinetics. Furthermore,nanobubble technology
shows promising applications in solid waste resource recovery. It increased unburned carbon recovery in fly ash
flotation by 10% while reducing LOI in tailings by 3. 5% and significantly. It also enhanced combustible recovery
from 79. 84% to 92. 91% in flotation of coal gasification slag via ultrasonic-cavitation pretreatment,demonstrating
substantial potential in resource recovery from waste streams. This innovative flotation approach provides an
economically viable and environmentally sustainable solution for ultrafine mineral separation,with the potential to
substantially improve mineral processing economics through 30%-50% reduction in flotation reagent consumption
and 15%-50% improvement in mineral recovery compared to conventional flotation methods.
文章编号: 中图分类号: 文献标志码:
基金项目:
| 作者 | 单位 |
| 黄浩 | 山东理工大学 资源与环境工程学院,山东 淄博 255049 |
| 吴中贤 | 山东理工大学 资源与环境工程学院,山东 淄博 255049 |
| 乔波 | 山东理工大学 资源与环境工程学院,山东 淄博 255049 |
| 陶东平 | 山东理工大学 资源与环境工程学院,山东 淄博 255049 |
引用文本:
黄浩,吴中贤,乔波,陶东平.微细矿物颗粒纳米气泡浮选研究进展[J].有色金属(选矿部分),2025(9):1-11.
HUANG Hao,WU Zhongxian,QIAO Bo,TAO Dongping.Recent Advances in the Study of Nanobubble Flotation of Fine Mineral Particles[J].Nonferrous Metals(Mineral Processing Section),2025(9):1-11.
黄浩,吴中贤,乔波,陶东平.微细矿物颗粒纳米气泡浮选研究进展[J].有色金属(选矿部分),2025(9):1-11.
HUANG Hao,WU Zhongxian,QIAO Bo,TAO Dongping.Recent Advances in the Study of Nanobubble Flotation of Fine Mineral Particles[J].Nonferrous Metals(Mineral Processing Section),2025(9):1-11.

关注微信公众号