本文已被:浏览 374次 下载 701次
中文摘要: 浮选可看作是气泡、颗粒在流体中宏尺度运动过程中局部发生微尺度矿化(碰撞、黏附及脱附)的过程,完整的浮选
动力学过程应涵盖以颗粒、气泡运动为主的多相流体动力学过程,及以颗粒 - 气泡相互作用为核心的矿化动力学过程。微细颗粒
浮选对湍流环境具有强依赖性,然而,受限于学科壁垒,经典微观浮选动力学模型由于未充分考虑微观湍流特性难以直接应用于
微细粒浮选,传统多相流模型因未充分考虑浮选物理化学因素难以适用于矿物浮选体系。本文系统总结了微细粒矿物浮选过程
受流体动力学主导的关键数理模型,具体包括气泡 - 流体间曳力系数模型、颗粒 - 流体间曳力系数模型、颗粒 - 气泡碰撞模型,同
时聚焦界面特性、浮选溶液化学与湍流流动等关键点,分析了现有模型的适用性,以及研究人员包括笔者团队为解决当前模型适
用性不足方面取得的进展,例如建立了考虑表面活性剂及颗粒负载作用的气 - 液曳力系数模型,以及考虑了微细尺度效应及表面
疏水效应的液 - 固曳力系数模型,以及在颗粒 - 气泡湍流碰撞模型修正方面做出的探索。充分考虑微尺度湍流特性与界面物理化
学深度耦合的浮选流体动力学研究,以及 CFD-AI 结合的模型研究范式是浮选基础理论取得突破的重要挑战。
Abstract:Flotation is a process in which micro-scale mineralization (collision,adhesion,and detachment)
occurs locally during the macro-scale movement of bubbles and particles in a fluid. A complete flotation kinetics
process should encompass the multiphase hydrodynamics process dominated by the movement of particles and
bubbles,as well as the mineralization kinetics process centered on particle-bubble interactions. The flotation of
fine particles is strongly dependent on the turbulent environment. However,due to disciplinary barriers,classical
microscopic flotation kinetics models are difficult to apply to fine particle flotation because they do not fully consider
the characteristics of micro-turbulence. Traditional multiphase flow models are also difficult to apply to mineral
flotation systems as they fail to adequately account for the physicochemical factors involved in flotation. This paper
systematically summarizes the key mathematical models dominated by hydrodynamics in the flotation process of
fine minerals,including the drag coefficient model between bubbles and fluid,the drag coefficient model between
particles and fluid,and the particle-bubble collision model. Meanwhile,focusing on key points such as interface properties,flotation solution chemistry,and turbulent flow,it analyzes the applicability of existing models and the
progress made by researchers (including our team) in addressing the insufficient applicability of current models. For
example,a gas-liquid drag coefficient model considering the effects of surfactants and particle loading,a liquid-
solid drag coefficient model considering the fine-scale effect and surface hydrophobic effect,and explorations in the
modification of particle-bubble turbulent collision models have been established. Flotation hydrodynamics research
that fully considers micro-scale turbulence characteristics and is deeply coupled with interface physicochemistry,
as well as the model research paradigm combining CFD (Computational Fluid Dynamics) and AI (Artificial
Intelligence),are important challenges for breakthroughs in flotation basic theory.
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
王兵军,郑恺昕,李晓恒,王海楠,闫小康.微细粒矿物浮选流体动力学数理模型研究进展[J].有色金属(选矿部分),2025(9):37-54.
WANG Bingjun,ZHENG Kaixin,LI Xiaoheng,WANG Hainan,YAN Xiaokang.Advances in Hydrodynamic Mathematical Models for Fine Mineral Flotation Hydrodynamic[J].Nonferrous Metals(Mineral Processing Section),2025(9):37-54.
王兵军,郑恺昕,李晓恒,王海楠,闫小康.微细粒矿物浮选流体动力学数理模型研究进展[J].有色金属(选矿部分),2025(9):37-54.
WANG Bingjun,ZHENG Kaixin,LI Xiaoheng,WANG Hainan,YAN Xiaokang.Advances in Hydrodynamic Mathematical Models for Fine Mineral Flotation Hydrodynamic[J].Nonferrous Metals(Mineral Processing Section),2025(9):37-54.

关注微信公众号